

Characterization and Modeling of InP-based Single Photon Avalanche Diodes for 1.5 µm and 1.06 µm Photon Counting

Mark Itzler

Princeton Lightwave Inc., Cranbury, NJ USA

Single Photon Workshop 2007 – Torino, Italy

PLI CO-AUTHORS: Xudong Jiang, Rafael Ben-Michael, Krystyna Slomkowski

COLLABORATORS for device characterization: Bruce Nyman.....PL/ Mark Entwistle

Sergio Cova......Politecnico di Milano Alberto Tosi Franco Zappa

Mike Krainak.....NASA/GSFC Stewart Wu Xiaoli Sun

Radu Ispasoiu.....Credence Systems

Gary Smith......MIT Lincoln Laboratories

Gerald Buller..... Heriot-Watt University Sara Pelligrini

Examples of photon counting applications for $\lambda > 1.0 - 1.6 \mu m$:

Communications

- Secure communications (e.g., quantum key distribution)
- Free space optical communication in photon-starved applications

Remote sensing

- 3-D Imaging
- Lidar / atmospheric sensing

Industrial and Biomedical

- Semiconductor diagnostics
- Single photon fluorescence (e.g., quantum dot markers)

- > Overview of InP-based single photon avalanche diodes (SPADs)
- > Dark count rate vs. detection efficiency
- Afterpulsing effects (and impact on photon counting rate)

> Separate Absorption, Charge, and Multiplication (SACM) structure

- High E-field in multiplication region \rightarrow induce avalanching
- Low E-field in absorption region \rightarrow suppress tunneling

> Planar passivated, dopant diffused device structure

- Stable and reliable buried p-n junction
- Widespread deployment of device platform in telecom Rx

- \succ Linear mode performance is behavior below breakdown voltage V_b
 - Output photocurrent below V_{b} is linearly proportional to input optical power

Performance uniformity at wafer level

- Breakdown voltage is very sensitive to structural details
 - Provides good measure for consistency of many device attributes

> Single photon avalanche diodes (SPADs) operate in "Geiger mode"

- Bias above breakdown voltage V_b by overbias ΔV
- Single photon induces avalanche leading to macroscopic current pulse
 - Avalanche detected using threshold detection circuit
- Used as a photon-activated switch with purely digital output
- Avalanche must be quenched after detection by lowering bias below V_b

- Overview of InP-based single photon avalanche diodes (SPADs)
- Dark count rate vs. detection efficiency
- Afterpulsing effects (and impact on photon counting rate)

- > Most important SPAD performance tradeoff: DCR vs. DE
- ➤ Typical performance: 10 kHz DCR at 20% DE, 100 kHz at 40% DE

Dark count rate behavior and mechanisms

- Simulations give insight into dominant DCR mechanisms
 - following formalism of Donnelly et al. [JQE 42, p. 797 (2006)]
- > Dark carriers can be generated by a number of mechanisms

- Sample properties will have a large impact on DCR
 - Bandgap (InP vs. InGaAs vs. InGaAsP)
 - Defects
- Study DCR dependence on temperature and voltage bias for clues
 - Extract activation energies to help identify dominant DCR mechanisms

- > Modeling provides reasonable fit to DCR vs DE behavior
 - gated-mode operation
 - 1 ns gate width
 - 500 kHz repetition rate

- **>** Two dominant DCR mechanisms for 1.5 μm SPADs at 213 K
 - Trap-assisted tunneling (TAT) in InP multiplication region
 - Thermal generation-recombination (G-R) in InGaAs absorber
- > TAT and G-R compete at low overbias (e.g., V_{ov} < 3 V)

> At higher temperatures, G-R dominates

- ➢ Use InGaAsP absorber in structure similar to 1.5 µm SPADs
 - Thermal G-R significantly reduced with wider bandgap InGaAsP
- > DCR approaching Si SPAD DCR with greatly increased PDE
 - Si SPADs have PDE < 2% at 1.06 μm

> At low temp, multiplication region trap-assisted tunneling dominates

• Thermal generation in absorber is inconsequential due to larger InGaAsP bandgap

> At room temp, two mechanisms compete

• Similar to 1.5 µm SPADs at low temp (213 K)

> Characterize DCR vs. temperature at different overbias for T < 220 K

Assume DCR ~ exp(-E_a/kT) to extract activation energy E_a

- > DCR vs. temperature at different overbias for T > 200 K
 - Can not fit with fixed E_a for $T \ge 220$ K

change in ${\rm E_a} \rightarrow$ change in dark carrier generation mechanism

- > Consider T dependence of DCR activation energy $E_a(T)$
- Variation of Ea with T is consistent with DCR modeling results

- For T \leq 230, low $E_{a, DCR} \rightarrow$ tunneling mechanisms
- For T \gtrsim 230, increasing $E_{a, DCR} \rightarrow$ thermal generation becomes important
 - thermal generation more significant at low overbias

G-R can be reduced by lower temperature operation

> TAT contribution is more fundamental

- Very sensitive to defect location in InP bandgap
- Linear dependence on defect concentration

> Modeling for 1.55 and 1.06 μ m used same TAT defect location of 0.78E_q

- Good consistency with MIT/LL modeling results for 1.06 μ m (0.75E_g)
- · Some consistency with highly varied older literature on native defects in InP
 - Possible origin with P vacancies in InP lattice [Verghese et al., JSTQE 13, 870 (2007)]

- Simulations very sensitive to defect attributes
- Need appropriate materials analysis (e.g., DLTS/capacitive spectroscopy)

- > Overview of InP-based single photon avalanche diodes (SPADs)
- Dark count rate vs. detection efficiency
- > Afterpulsing effects (and impact on photon counting rate)

Description of afterpulsing

> Afterpulsing is most serious limitation of InP SPADs; limits repetition rate

- > Avalanche carriers temporarily trapped at defects in InP multiplication region
- Carrier de-trapping at later times can initiate "afterpulse" avalanches
 - Afterpulsing likely if "hold-off" times $T_{h\text{-}o} \lesssim$ detrapping time τ_d

Afterpulse probability: short gate measurement

Assess afterpulsing using short (1 ns) gates as function of repetition rate

- Repetition rate varied from 0.5 MHz to 10 MHz
- Photon arrival staggered to coincide with only "odd" gate pulses
- Afterpulsing indicated by increased dark count rates in "even" pulses

> 5 MHz repetition rate maintains acceptable afterpulse probability

> Assess impact of afterpulsing through DCR dependence on hold-off time

- Looking at afterpulses induced by dark counts only
- Sharp rise in DCR at short T_{h-o} due to afterpulsing

- ➢ Normalize to background DCR → shows modest effect of temperature
- DCR vs. T_{h-o} curves collapse to a single curve with correct rescaling
 - Same curve shape up to temperature-dependent scale factor for T_{h-o}

Xiang *et al.*, JSTQE <u>13</u>, 895 (2007)

Collapse allows extraction of afterpulsing activation energy

- Use DCR vs T_{h-o} curve collapse to find afterpulse activation energy
 - Assuming single detrapping time τ_{d} , inverse of scale factor $\propto \tau_{d}$

- Small $E_{a,AP} \sim 0.024 \text{ eV} \rightarrow \text{change in AP between 150 K and 220 K is only 2X}$
- E_{a,AP} increases at higher T, but still modest impact
 - change in AP between 220 K and 250 K is ~2X 3X
- Increased temperature does not provide much leverage for reducing AP

- Assess afterpulsing vs gate length using DCR vs T_{h-o} data
- Simulation provides qualitative agreement with measured data
 - Assumes single detrapping time τ_d following Kang et al. [APL 83, 2955 (2003)]

• Smaller current flow at <u>shorter gates</u> \rightarrow greatly reduced afterpulsing

> Low overbias reduces afterpulsing relative to high overbias

- 6 V overbias: very large DCR increase (> 100X) at $T_{h-o} = 4 \ \mu s$
- 2 V overbias: very small DCR increase (~ 2X) at T_{h-o} = 4 µs

Smaller current flow at <u>lower overbias</u> → reduced afterpulsing

> Single trap vs. multiple traps: fundamental question for modeling

• Multiple traps: too many free parameters, or correct physics?

De-trapping times found will depend on hold-off times T_{h-o} used

• For narrow range of T_{h-o} , see just one de-trapping time from $R_{AP}(t)$

- > Afterpulsing literature suggests multiple traps
 - De-trapping times identified over 4 orders of magnitude
 - But are these de-trapping times physically meaningful?

Source	Temperature [K]	Hold-off time [µs]	Detrapping times [µs]				Toobaiquo
			τ_1	τ_2	τ_3	$ au_4$	rechnique
PLI/NASA	250	0.14 - 0.46	0.07				free-running
MIT/LL	250	1.0 – 10		0.9			double-pulse
Univ. Virginia	220 – 240	0.02 – 50	0.15	1.0	5	45	double-pulse
MagiQ	195 – 230	1.25 – 100		0.5	6	100	double-pulse
PLI/POLIMO	200 – 220	4 – 1000			~15	~150	DCR vs. T _{h-o} scaling

Conclusions

Present DCR vs. DE performance

- + 1.5 μm : ~10 kHz at 20% DE, T ~ 215 K, 25 μm dia.
- 1.06 μm : ~1 kHz at 30% DE, T ~ 235 K, 80 μm dia.
- > DCR vs DE modeling provides good fit to experimental data
 - Illustrates trade-off between trap-assisted tunneling (TAT) and thermal generation
 - Activation energy studies confirm dominant mechanisms
 - Consensus forming around principal TAT defects
- > Different approaches to afterpulse mitigation for higher repetition rate
 - Reduce initial carrier trapping \rightarrow mostly a materials problem
 - Increased operating temperature provides only modest impact on afterpulsing
 - Reduce avalanche charge flow \rightarrow operating conditions and design
 - Lower overbias voltage (more quantitative analysis needed)
 - Reduced overbias duration using shorter gates or faster quenching
 - Substantial opportunity for circuit design